CUCET Mathematics MSc Questions Paper

It Contains

- CUCET-2019 Question Paper
- CUCET-2018 Question Paper
- CUCET Sample Paper
- CUCET-2016 Available Soon

No. of Pages: 32

Download NET/GATE/SET Study Materials at <u>https://pkalika.wordpress.com/</u> FB Page: <u>https://www.facebook.com/groups/pkalika/</u>

(Provide your Feedbacks/Comments at maths.whisperer@gmail.com)

	(1) <u>CUCET-2019 MSc Mathema</u>
Tes	t Paper Series Code C Question Booklet No. : 2276163
Tes	t Date: 26 May 2019 Time : 09:00 AM To 11:00 AM
Ent (Ma	trance Test for the Course(s): M.A./M.Sc. (Mathematics) [CUJAM], [CUKAS], [CUMGB], [CUSBR], M.Sc. athematics) [CUKER], [CUHAR], [CUPUN], [CUKNK], [CURAJ], [CUJHD], M.Sc. B.Ed. (Mathematics) [CURAJ].
	1 Number : 2 1 8 8 1 3
les	st Center Code : 188
Na	me of the Candidate : NEHA KUMART.
	- Part .
Ca	ndidate's Signature: Neha Kumari Invigilator's Signature:
	Instructions to Candidates
1.	Do NOT open the Question Booklet until the Hall Superintendent gives the signal for the commencement of the examination.
2.	Write your Name, Roll Number and Test Center Code (as given in the Admit Card) and sign in the space provided above.
3.	After the commencement of the examination, open the Question Booklet. If the Question Booklet or the OMR Answer Sheet or both are not in good condition, then ask for immediate replacement. No replacement will be made 5 minutes after the commencement of the examination.
4.	In the ANSWER SHEET (OMR) fill up/shade the required entries (Roll Number, Test Center Code, Test Paper Code, Question Booklet Number etc. in the space provided) using black/blue ball point pen.
5.	Part-A of the Question Booklet contains 25 Questions. Part-B of the Question Booklet contains 75 Questions. A candidate is required to answer all the questions.
6.	All questions are in MCQ Pattern. There is only one most appropriate correct answer for each question.
7.	All questions carry equal marks. There will be negative marking. Each correct answer carries 01 mark and for each wrong/incorrect answer 0.25 mark will be deducted. Question not attempted will not be assessed.
8.	Darken only one circle for each question. If you darken more than one circle for the question, it will be deemed as wrong/incorrect answer. Any change in the answer once marked is NOT allowed.
).	Use the Answer Sheet (OMR) carefully. No spare Answer Sheet will be given.
	Use the Answer Sheet (OMR) carefully. No spare Answer Sheet will be given. Do not make stray marks on the OMR Sheet.
10.	-
10. 11.	Do not make stray marks on the OMR Sheet. After completion of examination, a candidate will be allowed to take Question Booklet and Candidate's copy of OMR answer sheet with him/her. However, each candidate must ensure to handover original copy of OMR sheet to the invigilator.
9. 10. 11. 12.	Do not make stray marks on the OMR Sheet. After completion of examination, a candidate will be allowed to take Question Booklet and Candidate's copy of OMR answer sheet with him/her. However, each candidate must ensure to handover original copy of OMR sheet to the invigilator. In case a candidate takes away the original OMR answer sheet, his/her examination will be treated as cancelled. No candidate will be allowed to leave the examination hall before completion of Entrance Test. Total time allowed for the

P.T.O.

CUCET-2019 MSc Mathematics

(2)

PART-A

1.	If the difference between simple interests for 3 y amount will be,	ears and 4 years at 5% annual rate is 42, then the
		(B) Rs 280 (D) Rs. 840
2.	The sum of three consecutive even integer is 54. V	What is the smallest number? 1+1+2+7
		(B) 14 (D) 12
3.	Area of circle and a square is equal. Ratio of one s	side of the square to radius of the circle will be,
		(B) $\sqrt{\pi}:1$ (D) $\pi:1$
4.	Fill in the blank to complete the series: 181, 174, 1	78 175. 182.
	(A) 174 . ((B) 176 (D) 180
5.	'Tree' is related to 'Forest' in the same way as 'Sol	ldier' is related to
		(B) Army (D) General
6.	Pointing to a gentleman, Deepak said. "His only br that gentleman related to Deepak?	other is the father of my daughter's father." How is
		(B) Grandfather (D) Uncle
7.	Complete the series BEP, CIQ, DOR, FUS, GAT, .	?
		B) HIT D) IEU
8.	Convert 36 km/hr into meters per second.	
		B) 12 D) 20
9.	'Wings of Fire' was written by	(mark 1) (mark)
		B) Salman RushdieD) Shashi Tharoor
10.		
		B) Maharashtra D) Jharkhand
11.	1	
¢.		B) West Bengal D) Gujrat
12.		
1. f	x /	B) Lord Dalhausie D) Lord Clive
13.	. Who among the following personalities stated "Swa	araj is my birth right and I am going to have it."
	 (A) Bal Gangadhar Tilak (B) Subhas Chandra Bose (C) Mahatma Gandhi (D) Jawahar Lal Nehru 	

[C-2]

PG-QP-27

14.	Choose the correct word to fill in the blank. The s	stude	ents the teacher on teacher's day for twenty
14.	years of dedicated teaching.		
	(A) Facilitated (C) Fantasized		Felicitated
15.		ni a	s well as the other team members of Indian team
	(A) were	(B)	was
	(C) has the construction of the second secon		have the ball of a base as the set of a the
16.	Choose the word most similar in meaning: Awkw	ard	$\mathcal{D}_{1} = - \langle \theta_{1} \rangle = - i \lambda_{1}$
	(A) Inept (C) Suitable	(D)	Dread full
17.	Choose the correct verb to fill in the blank below		en and several distributed in the several s
	Let us		
	(A) Introvent (C) Atheist	(B) (D)	Alternate And Alternate Alternate Alternate
18		RESI	LIENT'. Concrete the provided out to desire of
10.	 (A) Stretchable (C) Rigid 	(B)	Spirited Buoyant
19.			
15.	(A) Humour		Keen Interest and and and the state of the s
	(C) Attitude	(D)	Liking
20.	Select the most suitable Antonym for the word 'R	OBL	JST'.
	(A) Sturdy(C) Muscular		Ridiculous Feeble
21.	Select the most suitable Antonym for the word 'D	ULL	The Westmann of the set of the set of the
	(A) Monstrous (C) fascinating	(D)	Horrid (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
22.	Select the pair which shows the same relationshi	p as	CANE : BAMBOO
	(A) Wood : Woodpecker		
			and a second the graduate of a second
	(C) Rubber : Malaysia(D) South Africa : Apartheid		and other the growth and being out the life of a
23	Why were you absent your dance cla	sse	s yesterday?
20.	(A) for	(B)	from
	(C) in	(D)	$\mathbf{to}_{\gamma} = \frac{10}{100} \operatorname{uot}(100) \operatorname{s}_{\gamma} \operatorname{top}(100) \operatorname{s}_{\gamma} \operatorname{top}(100) \operatorname{s}_{\gamma} \operatorname{top}(100) \operatorname{s}_{\gamma} \operatorname{top}(100) \operatorname{s}_{\gamma} \operatorname{s}_{\gamma} \operatorname{top}(100) \operatorname{s}_{\gamma} \operatorname{s}_$
24.	A man is facing towards South. He take 135° a facing side of the man?	Intic	ock wise, 180° clockwise rotation then what was
	(A) North-East	(B) (D)	North-West South-West
25.	If the value of "x" is 25% less than the value of "y	". He	ow much % y's is more than that of x's ?
	M. 72 (A. 77 (M)		
	(A) $33\frac{1}{3}\%$ of support (b) (, S) is (c, c, c) 177	(B)	$66\frac{2}{3}\%$
	(C) 75% $33 - 0 = 131 - (0) = 131 - (1)$	(D)	66 <u>-</u> %
			3

(3)

[C-3]

PART - B

(4)

26. Solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is (B) $e^y = x^2/2 + e^x + c$ (A) $e^y = x + e^x + c$ (C) $e^y = x^3/3 + e^x + c$ (D) $e^y = x^4/4 + e^x + c$ 27. The integrating factor of the differential equation $(1 - x^2)dy/dx + 2xy = x\sqrt{1 - x^2}$ is (A) $\frac{1}{1-\pi}$ (B) $\frac{1}{1-r^2}$ (C) $1 - x^2$ (D) 1 - x28. The solution of differential equation $\frac{d^2y}{dx^2} + 4y = 0$ with initial conditions y = 2 and dy/dx = 0 when x = 0 is (B) $y = 2\cos 2x$ (C) $y = \sin 4x$ (D) $y = \tan x$ (A) $y = 2\sin 2x$ 29. Which of the following is a particular integral of $\frac{d^2y}{dr^2} - 3\frac{dy}{dr} + 2y = e^{5x}$? (D) e^{x^2} (A) $\frac{1}{10}e^{5x}$ (B) e^{-5x} (C) e^x 30. Let D =: d/dx. Then the value of $\left\{\frac{1}{xD+1}\right\} x^{-1}$ is (B) $\frac{\log x}{x}$ (C) $\frac{\log x}{x^2}$ (D) $\frac{\log x}{x^3}$ (A) $\log x$ 31. If $y_1(x)$ and $y_2(x)$ are two solutions of $\frac{d^2y}{dx^2} + 4y = 0$, then the value of Wronskian is (C) 2 (D) 3 (B) 1 (A) 0 32. Differential equation of the family of parabola $y^2 = 4ax$, where a is an arbitrary constant is

(A)
$$y = 2x(dy/dx)$$
 (B) $y = dy/dx$ (C) $y = 2x + dy/dx$ (D) $dy/dx + y^2 = x^2$

33. The orthogonal trajectory of the hyperbola xy = a is

(A) x² - y² = a
(B) x² = ay²
(C) x² + y² = a
(D) x = ay²

34. The order of differential equation dy/dx = √x + √y is

(A) 1
(B) 2
(C) 3
(D) 4

35. Solution of the initial value problem e^x(cos y dx - sin y dy) = 0 with y(0) = 0 is

(A) $e^x \cos y + 1 = 0$ (B) $e^x \cos y - 1 = 0$ (C) $e^y \cos x + 1 = 0$ (D) $e^y \cos x - 1 = 0$

36. If $F(x, y, z) = xy^2 + 3x^2 - z^3$, then the value of $\nabla F(x, y, z)$ at (2, -1, 4) is equal to (A) 13i - 4j - 48k (B) i - 4j - k (C) 13i + j - 6k (D) -13i + 4j - 6k

[C-4]

PG-QP-27

-	و معالم م			(5)		1629
	37.	The directional deri in the direction of 6	vative of the function $i + 2j + 3k$ is	on $F(x, y, z) = xy^2$	$-4x^2y+z^2$ at $(1,-1,2)$	
		(A) 1/7		(C) 54/7	(D) 7	
	38.	If $\vec{F} = zi + xj + yl$	c, then $\operatorname{curl} \overrightarrow{F}$ is		an vic ¹ igerija	
	00.	(A) $i + j + k$		(C) $i - j - k$	(D) $2i + j - 2k$	
	39.	Let F be a finite finite of F ?	eld. Then which of t	he following may be	the possible cardinality	
		(A) 15	(B) 20	(C) 25	(D) 30	
	40.	Every subgroup of	an abelian group is	the second		
		(A) abelian	100 (100 (1) 14	(B) cyclic		
		(C) non abelian		(D) none of the abo	ove.	÷
	41.	Le $G = \begin{cases} \begin{bmatrix} a & a \\ a & a \end{bmatrix}$	$a \in \mathbb{R} \setminus \{0\}$ be a g	roup with binary op	eration defined by usual	
		matrix multiplicati	on. Then the inverse	of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is	againg: a sub-sal-	
		$(A) \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	(B) $\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$	(C) $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$	(D) $\begin{bmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{bmatrix}$	
	42.	Let H and K be subof G ?	bgroups of G . Then w	hich of the following	is necessarily a subgroup	
		(A) <i>HK</i>	(B) <i>KH</i>	(C) $H \cap K$	(D) $H \cup K$	
	43.	Let S_5 be the permutation $\sigma = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 \end{pmatrix}$ is equal	ve symbols {1,2,3,4 to	,5}. Then order of per-	
		(A) 5	(B) 4	(C) 3	(D) 6	
	44.	Let G be a group a solves the equation	axb = c for x ?	La. C. main Plant	Which of the following	न्द्र हो। देव
		(A) acb^{-1}	(B) $a^{-1}b^{-1}$	(C) $a^{-1}cb^{-1}$	(D) <i>cb</i> ⁻¹	
	45.	Let H be a subgroup	ip of a noncyclic grou	up G. Then which of	the following is correct?	
		(A) H is always no	oncyclic	(B) H is always cyc	clic	
		(C) H is always no	nabelian	(D) None of the ab	ove	
	46.	Let S_6 be the perm lowing is not an ev			5,6}. Which of the fol-	
		(A) (1 3 5 6 2)	1. 4. 8	(B) (1 2 3)(4 5)(4 5	5)	
		(C) (2 6 3 4 5 1)	- de la fate 0 -	(D) (1 2)(1 4)(2 3)	5) (4 5)	
				1 W 0 W 0 0 0		

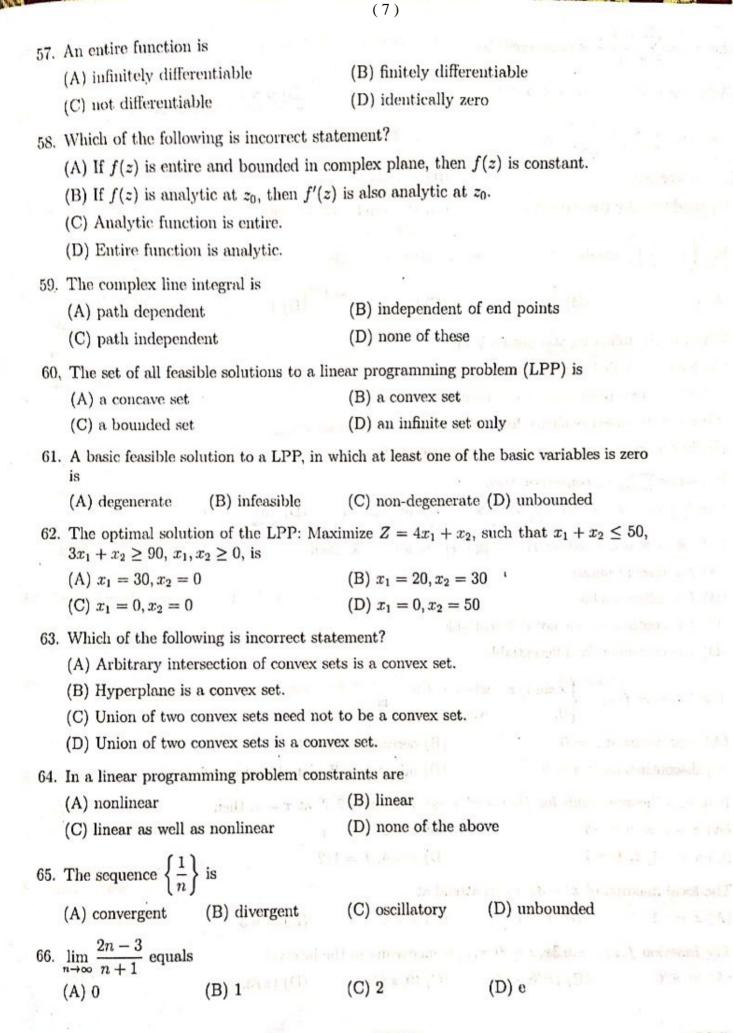
22-12-03

į.

-

[C-5]

By I (Dated age B age F


PG-QP-27

Ċ,

(6)47. Which of the following is correct? (A) Every integral domain is a field. (B) Every finite integral domain is a field. (C) There is an integral domain with characteristic equal to 10. (D) None of the above. 48. Let J be an ideal of commutative ring with unity and let u be an unit element of Rsuch that $u \in J$. Then (A) The multiplicative identity $1 \notin J$ (B) J is a proper ideal of R such that $J \neq R$ (C) J = R(D) There is a minimal ideal M such that $J \subset M \subseteq R$ 49. Which of the following is a prime ideal of $(\mathbb{Z}, +, \cdot)$? (A) 6Z (B) $2\mathbb{Z} \cap 4\mathbb{Z}$ (C) $7\mathbb{Z}$ (D) $4\mathbb{Z} \cap 8\mathbb{Z}$ 50. If Z = 2 - 3i, then |Z| equals (D) -1 . (A) 13 (B) $\sqrt{13}$ (C) -13 51. $\int_{0}^{1} ze^{2z} dz$ equals (B) $(e^2 + 1)/4$ (C) $(e^2 - 1)/4$ (D) $e^2 - 1$ (A) $e^2 + 1$ 52. $\lim_{T \to 1^+} \frac{Z^{10} + 1}{Z^6 + 1}$ equals AHIAI (B) 2/5 (C) 5/3 (D) 1/3 (A) 3/5 53. The integral $\int_{0}^{1-i} 4z \, dz$ equals (A) 18 - 4i (B) -4i (C) i(D) -i54. If f(z) is analytic in a simply connected domain D and f'(z) is continuous in D, then $\oint f(z) dz$ equals (B) 1 (C) $2\pi i^{-1}$ (D) $-2\pi i$ (D) $-2\pi i$ (A) 0 55. The value of the integral $\int_{|z-2|=2}^{1} \frac{5z+7}{z^2+2z-3} dz$ is equal to amb down on the second se (A) πi (B) $2\pi i$ (C) $3\pi i$ (D) $6\pi i$ (D) $6\pi i$ Automotion in the state during 56. If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then (A) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ (B) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$ (C) $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial u^2} \neq 0$ and $\frac{\partial^2 v}{\partial r^2} + \frac{\partial^2 v}{\partial u^2} = 0$ (D) $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial u^2} \neq 0$ and $\frac{\partial^2 v}{\partial r^2} + \frac{\partial^2 v}{\partial u^2} \neq 0$

[C-6]

PG-QP-27

[C-7]

PG-QP-27

67. The series $\sum_{n=1}^{\infty} \frac{n+1}{n^p}$ is convergent for (A) 0(B) 1(C) p = 2(D) p > 268. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is (A) convergent (B) divergent (C) conditionally convergent (D) absolutely convergent 69. $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ equals (B) $\frac{1}{2}$ (A) e (C) 0(D) 1 70. Which of the following statements is false? (A) Every bounded sequence is convergent. (B) Every convergent sequence is bounded. (C) Every bounded sequence has a limit point. (D) Every convergent sequence has a unique limit. 71. If a series $\sum_{n=0}^{\infty} a_n$ converges, then (B) $\lim_{n \to \infty} a_n = \infty$ (C) $\lim_{n \to \infty} a_n = 1$ (D) $\lim_{n \to \infty} a_n = 10$ (A) $\lim_{n\to\infty} a_n = 0$ 72. If $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = |x - c|, for all $x \in \mathbb{R}$; then (A) f is discontinuous (B) f is differentiable (C) f is continuous but not differentiable (D) f is continuously differentiable the second man and an at the second solar to the second se 73. The function $f(x) = \begin{cases} x \sin 1/x, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$ is (A) continuous at x = 0(B) derivable at x = 0(C) discontinuous at x = 0(D) infinitely differentiable at x = 074. If Rolle's theorem holds for $f(x) = x^3 + ax^2 + bx$ on [-2, 2] at x = 1, then (A) a = 1/2, b = -4(B) a = 2, b = -4(C) a = -1/2, b = 4(D) a = 4, b = 1/275. The local maxima of $x^3 - 3x + 3$ is attend at (A) x = -1(B) x = 1(C) x = 0(D) x = 376. The function $f(x) = \sin 3x, x \in [0, \pi/2]$ is increasing in the interval

(8)

(A) $(0, \pi/6)$ (B) $(\pi/6, \pi/2)$ (C) $(0, \pi/2)$ (D) $(\pi/3, \pi/2)$

[C-8]

PG-QP-27

		(9)	
77. The function $f(x)$	$x) = x^2$ is not uniform	aly continuous on the	e interval
(A) [-1,1]	(B) [1,2]	(C) $[0,\infty)$	
78. Every compact s	et of real numbers is		10 X 10 10
(A) open		(B) closed	ing the strength of the strength of the
(C) closed and b	ounded	(D) open and bou	inded
79. The set $\mathbb R$ of rea	l real numbers is	301	
(A) closed		(B) bounded	a the second
(C) countable		(D) none of the al	bove .
80. The upper limit	of the sequence $\{(-)$	$1)^n$ is	
(A) 1	(B) -1	(C) 0	(D) 2
81. If $f(x, y)$ is a ho derivatives, the	progeneous function of $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal	f degree n in x and y and y to	and has continuous partial
(A) f	dx dy (B) nf	(C) 0	(D) $n(n-1)f$
82. $\lim_{(x,y)\to(2,1)} (x^2 + 2)$	0.000000 (200)	anka,	ane of the second of the second
(A) 0	(B) -7	(C) 7	(D) -1
83. The radius of c	onvergence of the seri	es $1 + 2x + 3x^2 + 4x^3$	+ is
(A) 0	(B) 1	(C) ∞	(D) 2
	e integral $\int_0^1 \int_0^x e^{y/x}$		and the second s
(A) $\frac{(e-1)}{2}$	(B) $\frac{(e+1)}{2}$	(C) e	(D) e^2
85. The value of the $x^2 + y^2 + z^2 = c$	e surface integral $\int \int_{S} a^{2}$ is		$+ z^3 dx dy$) over the sphere
(A) $\frac{12}{5}\pi a^5$	(B) πa^5	(C) $\frac{5}{12}\pi a^5$	(D) πa^2
86. Which of the fo	llowing sets forms a		perceiper a server point and
(A) {(1,1), (3,1))}	(B) {(0,1), (0,-3)	
(C) $\{(2,1), (1,-1)\}$	1), (3,0)}	(D) $\{(1,0), (2,0)\}$	
87. Rank of the ma	trix $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$ is eq	ual to	En al d'Alexandre d'Alexandre d'Alexandre Glass maior d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d' Glass maior d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'Alexandre d'A
(A) 1	(B) 2	(C) 3	(D) 4
	100 Dama Parts		(C Panel Lunch (Canada)

[C-9]

PG-QP-27

(10)

88. Which of the following functions $F: \mathbb{R}^2 \to \mathbb{R}^2$ is not a linear transformation ? (A) F(x, y) = (x + y, x - y)(B) F(x, y) = (x + y, x)(C) F(x,y) = (2x - y, x)(D) F(x, y) = (x, 1 + y)89. The dimension of the vector space of all 3×3 real symmetric matrices is (A) 9 (B) 6 (C) 3 (D) 4 90. The determinant of $\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$ is (A) (z-x)(z-y)(y-x)(B) $(z-x)^2(z-y)(y-x)$ (D) $(z-x)^2(z-y)^2(y-x)^2$ (C) $(z^2 - x^2)(z^2 - y^2)(y^2 - x^2)$ 91. If $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then M^{2019} equals $(A) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$ 92. Which of the following matrix is singular? $(A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix} \qquad (D) \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$ 93. If $M = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$, then the eigenvalues of M are (A) -4 and -3 (C) 2 and 0 (B) 4 and 3 (D) 3 and -3 94. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by F(x, y) = (2x + 3y, 4x - 5y). Then the matrix representation of the linear transformation relative to basis B = $\{(1,0),(0,1)\}$ is $(A) \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix} \qquad (B) \begin{pmatrix} 0 & -3 \\ 4 & 5 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ 95. The eigenvalues of a skew-symmetric matrix are (A) always pure imaginary (B) always zero (C) either zero or imaginary (D) always real 96. If $M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which of the following is a zero matrix ? (A) $M^2 - 7M - 6I$ (B) $M^2 - 7M + 6I$ (C) $M^2 - 6M - 7I$ (D) $M^2 - 6M - 7I$ 97. Let $T: V_n(F) \to V_m(F)$, where $V_n(F)$ and $V_m(F)$ are finite dimensional vector spaces. Then (A) rank(T)+nullity(T)=dim $(V_n(F))$ (B) rank(T)=nullity(T)) (C) rank(T) - nullity(T)=dim $(V_n(F))$ (D) rank(T) - nullity(T)=dim $(V_n(F))$

[C-10]

PG-QP-27

(Download from https://pkalika.in/category/download/question-paper/)

TS JULL

98. T	The singleton set	$\{x\}$ is linearly dependent		. 1 (eres ()
(.	A) $x = 0$	(B) $x \neq 0$	(C) x is a scalar	(D) none of these
				3
99. T	The eigenvalues of	of an orthogonal matr	ix are	
(.	A) zero	(B) imaginary	(C) always negativ	e (D) of unit modulus
100.	Degree of the di	fferential equation dy	$=(y+\sin x)dx$ is	1 ta hid

(A) 1 (B) 2 (C) 3 (D) 4

1

12

	PAR	12) T-A <u>CUCET-2018 MSc Mathematics</u>	
1.	Which of the following best expresses the meaning	ng of 'Exasperate'?	
	A) Elevate B)-Irritate	C) Distrust D) Transcend	
2.	Which of the following is opposite in meaning to	the word 'Captivate'?	
	A) Canvass B) Fascinate	C) Offend D) Campaign	
3.	Which of the alternatives best expresses the sentence?	meaning of the underlined phrase in the followi	ng
	 Sheetal is in the habit of <u>taking French leave</u> very A) Taking sick leave C) Taking leave on medical grounds 	y often. B) Taking extra ordinary leave D) Taking leave without permission	
4.	Below are given three statements, such as P, Q, the given statements to be true even if they app then decide which of the conclusions logically for	and R, followed by four conclusions. You have to tapear to be at variance with commonly known facts a ollow(s) from the given statements.	ike ind
	StatementsP. All books are notes.Q. Some notes are watches.R. No watch is a pencil.		
	Conclusions		
	I. Some watches are books.III. No watch is a book.	II. Some notes are pencils.IV. Some notes are not pencils.	
	A) I and either II or IV followC) I, II and III follow	B) I, III and IV followD) Either I or III and IV follow	••
5.	At which of the following places is the Indian N	National Defence University being set up?	
	A) Hyderabad, TelanganaC) Gurgaon, Haryana	B) Bhubaneswar, OdishaD) Jodhpur, Rajasthan	
6.	Who was the last Hindu king of North India?		
	A) PushyabhutiC) Pushyamitra	B) HarshavardhanaD) Skandagupta	
7.	Which one of the following travelers visited Ind		
	A) Huen-Tsang B) Fa-Hien	C) Marco Polo D) Nicolo Conti	
8.	The 'International Day of Older Persons' is obs	served every year on	
~	A) 1 st October B) 2 nd October	C) 3 rd October D) 4 th October	
9,7	Santosh Trophy is related to A) Cricket B) Hockey	C) Football D) Badminton	
10.			
	 A) Hardware Test Trial Protocol C) Hyper Text Transfer Protocol 	B) Hyper Text Transfer PackageD) Hyphenated Text Transfer Protocol	4
11.	Language of the Preamble of the Indian Constit		
	A) USC) Australia	B) CanadaD) Ireland	

[B-2]

(13)

Ve

.

•

CUCET-2018 MSc Mathematics

	Which of the following terms	is used in banking or	fina	nce?		
12.	A) Moral SuasionC) Jacksonian Seizure	I) I	ncarnation		
13.	The Nawabganj Bird Sanctua A) Govind Ballabh Pant C) Ram Prasad Bismil		3) 1	en renamed after Ashfaqullah Khan Chandrashekhar Az	zad	
14.	$1^3 + 7^3 + 13^3 = ?$ A) 254 B) 2	2541	C)	2540	D) 25400	
15.	If a sum of money doubles it A) 12 years B)	self in 6 years, it beco 24 years	mes C)	5 times in how ma 10 years	ny years? D) 13 years	
16.	A mixture of 40 litres of mil that water may be 20% in the	lk and water contains c new mixture?			water should be a D) 375	dded to it so
		150		200		
17.	Three years ago, the average the average age of the family	e age of a family of f y is now the same as b	befor	e. Find the age of t	ears. A baby havir he baby.	ig been born,
	A) One yearC) Three years		D)	Two years Four years		
18.	The speed of a car is increasing km, what was the total dista	sed by 2 km every on ince travelled in 12 ho	e hou ours?	ur. If the distance t	ravelled in the firs	t hour was 35
	A) 562 km C) 482 km		B) D)	552 km 662 km		
19.	Ashish drives his car <u>extren</u>	<u>nely f</u> ast when there is	s rai	nfall.		
	The underlined word is an o	example of				
		Adverb	C)	Adjective	D) Pronoun	
20.		correctly spelt? Commodius	C)	Commodous	D) Commodos	
21.	.,,	g sentence contains e	ror?	7) as the piece we h	eard (D) on the rad	lio last night.
22.		s correct, if the follow	ving	sentence is change	a mo passive von	
	Open your door.A) Your door has openedC) Let your door be open		B) D) Has your door b) Let's open your		
23.			rror	?		
20.	A) Ganges, one of the mo which flows through the na	ost sacred rivers / B)) to	Hindus, / C) is a	trans-boundary riv	ver of Asia / D)
24.						17.
27.	A) A B) An	C) The	D) None of the	ne above
25.	Select the correct plural of A) Arches B	``arch') Archs	C	C) Archees	D) Arch	

[B-3]

PG-QP-23

PART-B

26 .	The integral $\int_{ z =2}^{ z =2} \frac{\cos z}{z^3} dz$ equals	
	 Λ) πì C) 2 πì 	$ \begin{array}{l} B) & -\pi i \\ D) & -2\pi i \end{array} $
27.	For every path between the limits, $\int_{-2}^{-2+i} (2+z)^2 dz$ is c	equal to
	A) i/3 C) -i/3	B) i/2 D) -i/4
28.	The value of $\int_{0}^{2+i} (z)^2 dz$ along the line $2y = x$ is	
	A) $\frac{5}{3}(2+i)$ C) $2-i$	B) $\frac{5}{3}(2-i)$ D) none of these
2 <u>9</u> .	The diagonal elements of Hermitian matrix areA) complex numberC) natural number	B) real numberD) none of these
3 <u>0</u> .	 The vectors (1/4, 0, -1/4), (1/3, -1/3, 0)) and (0, A) linearly independent, C) constant 	1/2, 1/2) areB) linearly dependentD) none of these
31.	If A and B are two matrices then A) rank (AB) = rank ($B^{T}A^{T}$) C) rank (AB)not equal to rank Rank (AB) ^T	B) rank (AB) = rank($A^{T}B^{T}$) D) none of these
32	The value of determinant $\begin{vmatrix} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \end{vmatrix}$ is	
	A) abc C) $bc + ca + ab$	B) $a^2b^2c^2$ D) zero
33.	If V is n dimensional vector space then any sub- A) $m < n$ C) $m = n$	 set of V containing m vectors is linearly independent if B) n < m D) None of these
34.	A) $\alpha = 0$	ff B) $\alpha \neq 0$ D) None of these
35	 C) α is a scalar If V is finite dimensional vector space and W T:V → W is a linear transformation then A) rank (T) + nullity (T) = dim V C) rank (T) + dim (V) = nullity (T) 	 b) None of these is any other vector space both over the same field F and B) rank (T) = dim V+nullity (T) D) rank (T) = nullity (T)

1

[B-4] (Download from https://pkalika.in/category/download/question-paper/) PG-QP-2

2z + y = 5The system of equations x - 3y = -1 is consistent when k =36. 3x + 4y = kA) 1 B) 2 C) 5 D) 10 37. If $A = \begin{bmatrix} 2 & 2 & -1 \end{bmatrix}$ then the characteristic polynomial for A is A) $x^3 + 5x + 8x + 4$ B) $x^2 + 5x$ C) $x^3 - 5x + 8x - 4$ D) None of these 38. If two vectors are linearly dependent then for some scalar c A) $\alpha = c\beta$ B) $c + \beta$ C) $\alpha = c - \beta$ D) None of these 39. A matrix M has eigen value values 1 and 4 with corresponding eigen vectors $(1, -1)^T$ and $(2, 1)^T$ respectively. Then M is $\begin{bmatrix} 3 & 2 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ A) $\begin{pmatrix} -4 & -8 \\ 5 & 9 \end{pmatrix}$ B) $\begin{pmatrix} 9 & -8 \\ 5 & -4 \end{pmatrix}$ C) $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$ D) $\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ $= \begin{bmatrix} 3-\lambda & 2 & -1 \\ 2 & 2-\lambda & -1 \\ 2 & 2 & -\lambda \end{bmatrix} = 0$ 40. If V is the vector space of $m \times n$ matrices over the field K then dim V is A) n B) m $=(3-\lambda)\{-2\lambda+\lambda^2+2\}$ C) mn D) m - n 41. If M is a 7×5 matrix of rank 3 and N is a 5×7 matrix of rank 5 then rank MN is -25-22+23 A) 1 B) 2 C) 5 D) 3 184-4+223 42. Theeigen values of a skew-symmetric matrix are $\frac{-6\lambda+3\lambda^2}{+2\lambda^2-\lambda^2}$ A) always zero B) always pure imaginary C) either zero or imaginary D) always real The system of simultaneous linear equations x + y + z = 0 and x - y - z = 0 has 43. A) no solution in R^3 B) a unique solution R^3 C) infinitely many solutions in R^3 D) more than 2 but finitely many solutions in R^3 44. If $A = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ and I is the 2×2 identity matrix then which of the following the zero matrix? B) $A^2 + A - 5I$ A) $A^2 - A - 5I$ D) $A^2 - 3A + 5I$ C) $A^{2} + A - I$ AI= 45. The rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x \ y \ z) T(x \ y \ z) = (y \ 0 \ z)$ is A) 0 B) 1 23 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4+3 & 2+3 \\ 6-3 & 3+1 \end{bmatrix} =$ C) 2 D) 3 $-\begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ | -G=QP-23

(15)

46. Let (Z, *) be an algebraic structure, where operation defined by $n^*m == \max\{n, m\}$. The second	Z is the set of integers and the operation " $*$ " is a binary nen (Z, $*$) is a
A) groupoidC) monoid	B) semigroup D) group
47. Let (G, *) be an algebraic structure where	G is the set of all non-zero real numbers and '*' is a binary
operation defined by $a * b = \frac{ab}{A}$ for all $a, b \in A$	G. Then the inverse of 'a' in G is
4	
A) $\frac{4}{4}$	B) 16 <i>a</i>
C) $\frac{16}{a}$	D) $\frac{4}{a}$
48, If (G, o) be a group and for all $a, b \in G$, (a)	$(ab)^{2} = a^{2}ab^{2}$ then (G, o) is a
A) normal sub group	B) abelian group
C) quotient group	D) lagrange group
49. Every sub group of an Abelian group 'G' iA) conjugate groupC) normal sub group	B) associative group D) lagrange group
50. If H, K are two subgroups of a group G the	
A) $HK \neq KH$	B) $HK \subset KH$
C) $HK \supset KH$	D) $HK = KH$
51. The inverse of an even permutation is	
A) odd permutationC) even or odd permutation	B) even permutationD) none of these
52. The product of permutations $(1 \ 2 \ 3)(2 \ 3)$	4 3).(1 3 4) is
A) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 2 & 1 \end{pmatrix}$	B) $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & 6 & 5 & 4 \end{pmatrix}$
C) $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$	D) I
53. The order of identity element in an additi	
A) zero C) one	B) infinity D) two
54. A ring R is an integral domain if	2) (
A) R is a commutative ring	
 B) R is a commutative ring with zero di C) R is a commutative ring without zero D) R is a ring with zero divisor 	
55. If the number of left cosets of a subgroum then	p H in a group G in and the number of right cosets of H in G is
A) $m \ge n$	B) $m \le n$ D) $m \ne n$
C) m=n	
A LINE FAL	
and the second sec	[B-6] PG-QP-23
(Download from https://pkalikaj	n/astagom/download/quastion_namor/)

(16)

(17) 56. A field is a A) vector space B) integral domain C) division ring D) commutative ring 57. The homomorphism ϕ from the ring R into ring R is an isomorphism iff the kernel $I(\phi)$ is A) $I(\phi) = \{0\}$ B) $I(\phi) = R$ C) $I(\phi) = R'$ D) None of these 58. If F is a field then its only ideals are A) Fonly B) (0) only C) both F and (0) D) None of these 59. If R is a commutative ring with unit element and M is a maximal ideal of R then A) RM is a field B) R/M is a field C) R/M is a field D) None of these 60. The solution of (D²+1) y = 0 satisfying the initial conditions y(0)=1 and $y'\left(\frac{\pi}{2}\right)=1$ is A) $y = 2x + \sin x$ B) $y = \cos x + 2\sin x$ D) $y = 2\cos x + 2\sin x$ C) $y = \cos x + \sin x$ The particular integral of the ODE $(D^2 + 1)y = \cos x + 2\sin x$ is 61. D+19=2 D=2 m= B) $-\frac{x\cos 2x}{4}$ A) $\frac{x\cos 2x}{4}$ D) $-\frac{x \sin 2x}{4}$ C) $\frac{x \sin 2x}{4}$ 102 + C2e The orthogonal trajectories of the family of curves $x^2 - y^2 = a^2$ is 62. $x^2 + y^2 = c^2$ PE = - 271 A) B) $\frac{x}{v} = c$ C) xy = cD) none of these 63. The homogeneous ODE M(x, y)dx + N(x, y)dy = 0 can be reduced to an ODE in which the variables are separated by substitution x - y = vA) x + y = vB) D) y = vxC) xy = vThe integrating factor of the differential equation =1 is B) $e^{2\sqrt{x}}$ (1) $\sqrt{2}$ D) $e^{2/\sqrt{x}}$ (1) $\sqrt{2}$ A) $e^{-2\sqrt{x}}$ C) $e^{-2/\sqrt{x}}$ PG-QP-23

(Download from https://pkalika.in/category/download/question-paper/)

[B-7]

(18)1.F. of the Bernoulli equation $\frac{dy}{dx} + Py = Qy^n$ is 65 B) $e^{\int P(n-1)dx}$ D) $e^{\int Pdx}$ A) $e^{\int nPdx}$ C) $e^{\int (1-n)Pdx}$ 66. Solving by variation of parameters for the equation $y'' + 4y = \tan 2x$, the value of the Wronskian is B) 2 A) 1 D) 4 C) 3 $4a 2\sqrt{ax}$ dydx changes into 67. By changing the order of integration, the integral x2 0 40 dxdy B) 2 Jay 4a ∫ ∫dxdy D) None of these C) 68. If an algebraic structure ([0,1], \oplus) and the operation \oplus is a binary operation defined by $x \oplus y = xy$ mod(8) for all x, $y \in ([0,1], \oplus)$, then $([0,1], \oplus)$ is a A) monoid B) semi group C) group D) abelian group If a feasible solution of a linear programming problem exists, the reason of feasible solutions is A) convex set B) connected set C) non-convex set D) none of these 70. If the set of feasible solutions of a LPP is a convex set then the optimal solution occurs at A) extreme point B) boundary point C) interior point D) none of these 71. To convert $\sum a_{ij}x_j \le b_i$ into equality we introduce A) surplus variable B) slack variable C) unrestricted variable D) none of these 72. Every basic feasible solution in the convex set of solutions of an LPP is a A) boundary point B) extreme point C) non-extreme point

D) non-boundary point

73. The directional derivative of the function $\phi = 4xz^3 - 3x^2yz^2$ at (2, -1, 2) along z-axis is

A) 244 B)	3)
-----------	----

C) 404

[B-8]

PG-QP-23

(Download from https://pkalika.in/category/download/question-paper/)

D) 144

240

			1
74.	If $\overrightarrow{A} = (3xz^2)\overline{i} - (yz)\overline{j} + (x+2z)\overline{k}$ then curl (curl \overrightarrow{A})		the strength of the
	A) $6x\hat{i} + 6y\hat{j} - 6z\hat{k}$	· .	
	B) $6x\hat{i} + (6y-1)\hat{j}$		
	C) $-6x\hat{i} + (6z-1)\hat{k}$		a car
	D) none of these		
75.	$\nabla . (\nabla \times \overrightarrow{v}) =$		
	A) $\nabla \times (\nabla, \vec{v})$	B) $\nabla \left(\nabla \cdot \overrightarrow{v} \right)$	
	C) 0	D) none of these	
76.	The series $\frac{2}{1^2} + \frac{3}{2^2} + \frac{4}{3^2} + \frac{5}{4^2} + \frac{6}{5^2} + \dots$ is		-
	A) conditionally converse		
	 B) absolutely convergent C) absolutely convergent 		
	D) none of these		
77.	The radius of convergence of the series $1 - x^2 + x^2$ A) 0	$4 - x^6 + \dots$ is	
	B) 1		
	C) 2 D) none of these		F (1997 18) F3
<u>7</u> 8-	If (G, o) is a group 24 the G can have a subgroup	n order	1 1 N 1
	A) J	B) 7	
	C) 8	D) 9	
79.	PI of the ODE $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ is		N) /
	A) $\frac{x^2}{3} + 4x$		- (au)
	A) $\frac{1}{3} + 4x$		7 (74)
	B) $\frac{x^3}{3} + 4$		۰,
	C) $\frac{x^3}{3} + 4x$		
	D) $\frac{x^2}{3} + 4$		
80.	The relative cost $z_i - c_i$ for a non-basic variable	in a simplex table is zero the	en there exists an alternate

(19)

- 80. The relative cost $z_j c_j$ for a non-basic variable in a simplex table is zero then there exists an alternate optimal solution, provided
 - A) it is starting simplex table
 - B) it is optimal simplex table
 - C) it can be any simplex table
 - D) none of these

81. If aseries $\sum_{n=1}^{\infty} a_n$ converges then the sequence $\{a_n\}_{1}^{\infty}$ B) converges to zero A) diverges D) None of these C) converges to any number 82. If a sequence is not a Cauchy sequence then it is a B) convergent sequence A) divergent sequence D) none of these C) bounded sequence 83. $\lim_{n \to \infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots + n^{\frac{1}{n}} \right)$ is B) 2 A) 1 D) none of these C) 0 84. If $f(x) = \begin{cases} \frac{1}{x^3} & -1 \le x \le 0\\ \frac{1}{x^3} & 0 \le x \le 1 \end{cases}$, then A) Rolle's theorem applies to f in [-1, 1] B) Rolle's theorem does not apply to f1[-1, 1] C) f is not continuous at x=0 D) f'(0)=085. The function $f(x) = \frac{|x|}{x}$, $x \neq 0$ may be continuous at the origin, if A) f(0) = 0B) f(0) = -1C) $f(0) = \infty$ D) cannot be continuous for any value of f(0)6x2-30x+36= 86. The function $f(x) = \frac{1}{x}$, x > 0 is A) continuous but not uniformly continuous B) discontinuous everywhere 12,22-30 C) neither continuous nor uniformly continuous D) uniformly continuous but not continuous 87. The polynomial $2x^3 - 15x^2 + 36x + 1$ is decreasing in the interval B) (3,∞) D) none of these C) (2,3) 88. For any complex number z = (x, y) in C, if $z.\overline{z} = z$ then $\overline{z} = z$ A) (0,0) B) (1,0) D) (1, 1) C) (0, 1) 89. An analytic function is A) infinitely differentiable B) finitely differentiable D) none of these C) not differentiable

(20)

[B-10]

(Download from https://pkalika.in/category/download/question-paper/)

PG-QP-23

(21)A non-empty set of real numbers which is bounded below has 90. A) supremum B) infimum C) no upper bound D) no lower bound If F is an open covering of a closed and bounded set A then 91. A) There exist an infinite sub collection of A which covers A B) There exist an uncountable sub collection of A which covers A C) There exist a finite sub collection of A which covers A Singleton set $\{x_0\}$ of R is 92. A) open B) closed C) neither open nor closed D) None of these 93. Every compact set of real numbers is A) closed and bounded B) open C) open and bounded D) closed The whole set X = R and ϕ are both 94. A) open B) closed C) neither open nor closed D) open and closed 95. Every finite subset R of real numbers has A) exactly one limit point B) all its points are limit points C) no limit point D) None of these 96. If f(z) is analytic in a simply connected domain D then for every closed path C in D B) $\oint_C f(z)dz = 1$ C) $\oint_C f(z)dz \neq 0$ A) $\oint f(z)dz = 0$ D) $\int_C f(z)dz \neq 1$ The Cauchy-Riemann equations are 97. A) both necessary and sufficient condition for a complex function to be analytic B) only a necessary condition for a complex function to be analytic C) only a sufficient condition for a complex function to be analytic D) None of these 98. The complex line integral is A) path dependent B) path independent C) independent of end points D) None of these 99. An analytic function is A) infinitely differentiable B) finitely differentiable C) not differentiable D) None of these 100. If f(z) is analytic in a simply connected domain D then for any point z_0 in D enclosed by a rectifiable Jordan C and f(z) is continuous on C then for any point z_0 in D, we have $f(z_0)$ is equal to B) $\frac{1}{2\pi i} \oint \frac{f(z)}{z-z_0} dz$ A) $\frac{1}{2\pi} \oint \frac{f(z)}{z-z_0} dz$ C) $2\pi i \oint \frac{f(z)}{z-z_0} dz$ (D) $2\pi \oint \frac{f(z)}{z-z_0} dz$

[B-11]

PG-QP-23

PART-A					
1.	Choose the correct word to fill in the blank. The s years of dedicated teaching. (A) Facilitated		ents the teacher on teacher's day for twenty Felicitated		
	(C) Fantasized	• •	Facilitated		
2.	present on the occasion		s well as the other team members of Indian team		
ľ	(A) were(C) has	• •	was have		
3.	Choose the word most similar in meaning: Awkwa	ard			
	(A) Inept(C) Suitable	· ·	Careful Dread full		
4.	Choose the correct verb to fill in the blank below				
	Let us (A) Introvent	(D)	Alternate		
	(C) Atheist	· ·	Altruist		
5.	Select the most suitable Synonym for the word 'F	ESI	LIENT'.		
	(A) Stretchable	• •	Spirited		
c	(C) Rigid	. ,	Buoyant		
6.	Select the most suitable <u>Synonym</u> for the word 'Z (A) Humour		Keen Interest		
	(C) Attitude		Liking		
7.	Select the most suitable Antonym for the word 'R				
	(A) Sturdy(C) Muscular	(B) (D)	Ridiculous Feeble		
8.	Select the most suitable <u>Antonym</u> for the word 'D				
	(A) Monstrous(C) fascinating		Horrid Ghastly		
9.	Select the pair which shows the same relationshi	p as	CANE : BAMBOO		
	(A) Wood : Woodpecker(C) Rubber : Malaysia	(B)	Timber : Tree South Africa : Apartheid		
10.	Why were you absent your dance cla				
	(A) for(C) in	(B) (D)	from to		
11.		. ,	ock wise, 180° clockwise rotation then what was		
	(A) North-East(C) South-East	• •	North-West South-West		
12.	If the value of "x" is 25% less than the value of "y". How much % y's is more than that of x's ?				
	(A) $33\frac{1}{3}\%$	(B)	25%		
	(C) 75%	(D)	$66\frac{2}{3}\%$		

(22)

[A–2]

13.	If the difference between simple interests for 3 amount will be,	years and 4 years at 5% annual rate is 42, then the	
	(A) Rs. 210(C) Rs. 750	(B) Rs 280(D) Rs. 840	
14.	The sum of three consecutive even integer is 54.	. What is the smallest number?	
	(A) 18 (C) 16	(B) 14 (D) 12	
15.	Area of circle and a square is equal. Ratio of one side of the square to radius of the circle will be,		
	(A) $1:\sqrt{\pi}$	(B) $\sqrt{\pi}$:1	
	(C) $1:\pi$	(D) $\pi: 1$	
16.	Fill in the blank to complete the series: 181, 174,		
	(A) 174 (C) 178	(B) 176 (D) 180	
17.	'Tree' is related to 'Forest' in the same way as 'S		
	(A) Battle	(B) Army	
	(C) Gun	(D) General	
18.	Pointing to a gentleman, Deepak said. "His only that gentleman related to Deepak?	brother is the father of my daughter's father." How is	
	(A) Father	(B) Grandfather	
10	(C) Brother-in-law	(D) Uncle	
19.	Complete the series BEP, CIQ, DOR, FUS, GAT (A) HEV	,? (B) HIT	
	(C) IET	(D) IEU	
20.	Convert 36 km/hr into meters per second.		
	(A) 10 (C) 15	(B) 12 (D) 20	
21.	'Wings of Fire' was written by		
21.	(A) APJ Abdul Kalam	(B) Salman Rushdie	
	(C) Amitav Ghosh	D) Shashi Tharoor	
22.	'Chhau' dance is associated with which of the fol	5	
	(A) Punjab(C) Jammu Kashmir	(B) Maharashtra(D) Jharkhand	
23.	Mineral rich 'Jharia' is located in which of the foll	owing states?	
	(A) Bihar	(B) West Bengal	
04	(C) Utter Pradesh	(D) Gujrat	
24.	Jhansi was annexed by which of the following Go (A) Lord Bentinck	(B) Lord Dalhausie	
	(C) Lord Cornwalis	(D) Lord Clive	
25.	Who among the following personalities stated "S	waraj is my birth right and I am going to have it."	
	(A) Bal Gangadhar Tilak(B) Subhas Chandra Bose		
	(0) Malastar 0 and 1		

- (C) Mahatma Gandhi(D) Jawahar Lal Nehru

(23)

(24)

PART - B

26. The sequence $\left\{\frac{1}{n}\right\}$ is (D) unbounded (A) convergent (B) divergent (C) oscillatory 27. $\lim_{n \to \infty} \frac{2n-3}{n+1}$ equals (A) 0(B) 1 (C) 2(D) e 28. The series $\sum_{n=1}^{\infty} \frac{n+1}{n^p}$ is convergent for (A) 0 (B) <math>1 $29. The series <math>\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is (C) p = 2(D) p > 2(A) convergent (B) divergent (C) conditionally convergent (D) absolutely convergent 30. $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ equals (B) $\frac{1}{2}$ (A) e(C) 0 (D) 1 31. Which of the following statements is false? (A) Every bounded sequence is convergent. (B) Every convergent sequence is bounded. (C) Every bounded sequence has a limit point. (D) Every convergent sequence has a unique limit. 32. If a series $\sum_{n=0}^{\infty} a_n$ converges, then (A) $\lim_{n \to \infty} a_n = 0$ (B) $\lim_{n \to \infty} a_n = \infty$ (C) $\lim_{n \to \infty} a_n = 1$ (D) lim $a_n = 10$ 33. If $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = |x - c|, for all $x \in \mathbb{R}$, then (A) f is discontinuous (B) f is differentiable (C) f is continuous but not differentiable (D) f is continuously differentiable 34. The function $f(x) = \begin{cases} x \sin 1/x, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$ is (A) continuous at x = 0(B) derivable at x = 0(C) discontinuous at x = 0(D) infinitely differentiable at x = 0

35. If Rolle's theorem holds for $f(x) = x^3 + ax^2 + bx$ on [-2, 2] at x = 1, then (A) a = 1/2, b = -4(B) a = 2, b = -4(C) a = -1/2, b = 4(D) a = 4, b = 1/236. The local maxima of $x^3 - 3x + 3$ is attend at (A) x = -1(B) x = 1(C) x = 0(D) x = 337. The function $f(x) = \sin 3x, x \in [0, \pi/2]$ is increasing in the interval (A) $(0, \pi/6)$ (B) $(\pi/6, \pi/2)$ (C) $(0, \pi/2)$ (D) $(\pi/3, \pi/2)$ 38. The function $f(x) = x^2$ is not uniformly continuous on the interval (A) [-1, 1](C) $[0, \infty)$ (B) [1, 2](D) [0,1]39. Every compact set of real numbers is (A) open (B) closed (C) closed and bounded (D) open and bounded 40. The set \mathbb{R} of real real numbers is (A) closed (B) bounded (D) none of the above (C) countable 41. The upper limit of the sequence $\{(-1)^n\}$ is (C) 0(A) 1 (B) -1 (D) 242. If f(x, y) is a homogeneous function of degree n in x and y and has continuous partial derivatives, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ is equal to (A) f(B) nf(C) 0 (D) n(n-1)f $\lim_{(x,y)\to(2,1)} (x^2 + 2x - y^2) \text{ equals}$ 43. (B) -7 (C) 7 (D) -1 (A) 044. The radius of convergence of the series $1 + 2x + 3x^2 + 4x^3 + \dots$ is (C) ∞ (B) 1 (D) 2 (A) 045. The value of the integral $\int_0^1 \int_0^x e^{y/x} dx dy$ is (A) $\frac{(e-1)}{2}$ (B) $\frac{(e+1)}{2}$ (C) e(D) e^2 46. The value of the surface integral $\int \int_S (x^3 dy dz + y^3 dz dx + z^3 dx dy)$ over the sphere $x^2 + y^2 + z^2 = a^2$ is (A) $\frac{12}{5}\pi a^5$ (B) πa^5 (C) $\frac{5}{12}\pi a^5$ (D) πa^2

(D) $\{(1,0), (2,0)\}$

48. Rank of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ 3 & 1 & 2 \end{pmatrix}$ is equal to (A) 1 (B) 2 (C) 3 (D) 4

(A) $\{(1,1), (3,1)\}$

(C) $\{(2,1), (1,-1), (3,0)\}$

49. Which of the following functions $F : \mathbb{R}^2 \to \mathbb{R}^2$ is not a linear transformation ?

(A)
$$F(x,y) = (x+y, x-y)$$

(B) $F(x,y) = (x+y, x)$
(C) $F(x,y) = (2x-y, x)$
(D) $F(x,y) = (x, 1+y)$

50. The dimension of the vector space of all 3×3 real symmetric matrices is (A) 9 (C) 3 (D) 4 (B) 6

51. The determinant of $\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$ is (A) (z-x)(z-y)(y-x)(B) $(z-x)^2(z-y)(y-x)$ (C) $(z^2-x^2)(z^2-y^2)(y^2-x^2)$ (D) $(z-x)^2(z-y)^2(y-x)^2$ 52. If $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then M^{2019} equals (C) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $(A) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$ 53. Which of the following matrix is singular? $(A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$ (D) $\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$ 54. If $M = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$, then the eigenvalues of M are (D) 3 and -3 (A) -4 and -3 (B) 4 and 3 (C) 2 and 0

55. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by F(x,y) = (2x + 3y, 4x - 3y)-5y).Then the matrix representation of the linear transformation relative to basis B = $\{(1,0),(0,1)\}$ is

$$(A) \begin{pmatrix} 2 & 3\\ 4 & -5 \end{pmatrix} \qquad (B) \begin{pmatrix} 0 & -3\\ 4 & 5 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$$

56. The eigenvalues of a skew-symmetric matrix are

- (A) always pure imaginary (B) always zero
- (C) either zero or imaginary (D) always real

57. If
$$M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which of the following is a zero matrix ?
(A) $M^2 - 7M - 6I$ (B) $M^2 - 7M + 6I$ (C) $M^2 - 6M - 7I$ (D) $M^2 - 6M - 7I$
58. Let $T : V_n(F) \to V_m(F)$, where $V_n(F)$ and $V_m(F)$ are finite dimensional vector spaces. Then
(A) rank(T) + nullity(T) = dim ($V_n(F)$) (B) rank(T) = nullity(T))
(C) rank(T) - nullity(T) = dim ($V_n(F)$) (D) rank(T) - nullity(T) = dim ($V_n(F)$)
59. The singleton set {x} is linearly dependent if
(A) $x^i = 0$ (B) $x \neq 0$ (C) x is a scalar (D) none of these
60. The eigenvalues of an orthogonal matrix are
(A) zero (B) imaginary (C) always negative (D) of unit modulus
61. Degree of the differential equation $dy = (y + \sin x)dx$ is
(A) 1 (B) 2 (C) 3 (D) 4
62. Solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2e^{-y}$ is
(A) $e^y = x + e^x + c$ (B) $e^y = x^2/2 + e^x + c$
(C) $e^y = x^3/3 + e^x + c$ (D) $e^y = x^4/4 + e^x + c$
63. The integrating factor of the differential equation $\frac{d^2y}{dx^2} + 4y = 0$ with initial conditions $y = 2$ and $\frac{dy}{dx} = 0$ when $x = 0$ is
(A) $y = 2\sin 2x$ (B) $y = 2\cos 2x$ (C) $y = \sin 4x$ (D) $y = \tan x$
64. The solution of differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$?
(A) $\frac{1}{12}e^{5x}$ (B) e^{-5x} (C) e^x (D) e^{x^2}
65. Which of the following is a particular integral of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$?
(A) $\frac{1}{12}e^{5x}$ (B) e^{-5x} (C) e^x (D) $\frac{\log x}{x^3}$
67. If $y_1(x)$ and $y_2(x)$ are two solutions of $\frac{d^2y}{dx^2} + 4y = 0$, then the value of Wronskian is
(A) 0 (B) 1 (C) 2 (D) 3

(Download from https://pkalika.in/category/download/question-paper/)

1

68. Differential equation of the family of parabola
$$y^2 = 4ax$$
, where a is an arbitrary constant is
(A) $y = 2x(dy/dx)$ (B) $y = dy/dx$ (C) $y = 2x + dy/dx$ (D) $dy/dx + y^2 = x^2$
(e) The orthogonal trajectory of the hyperbola $xy = a$ is
(A) $x^2 - y^2 = a$ (B) $x^2 = ay^2$ (C) $x^2 + y^2 = a$ (D) $x = ay^2$
70. The order of differential equation $\frac{dy}{dx} = \sqrt{x} + \sqrt{y}$ is
(A) 1 (B) 2 (C) 3 (D) 4
71. Solution of the initial value problem $e^x(\cos y \, dx - \sin y \, dy) = 0$ with $y(0) = 0$ is
(A) $e^x \cos y + 1 = 0$ (B) $e^x \cos y - 1 = 0$
(C) $e^x \cos x \pm 1 = 0$ (D) $e^x \cos x - 1 = 0$
72. If $F(x, y, z) = xy^2 + 3x^2 - z^3$, then the value of $\nabla F(x, y, z)$ at $(2, -1, 4)$ is equal to
(A) $13i - 4j - 48k$ (B) $i - 4j - k$ (C) $13i + j - 6k$ (D) $-13i + 4j - 6k$
73. The directional derivative of the function $F(x, y, z) = xy^2 - 4x^2y + z^2$ at $(1, -1, 2)$
in the direction of $6i + 2j + 3k$ is
(A) $1/7$ (B) $2/7$ (C) $54/7$ (D) 7
74. If $\vec{F} = zi + xj + yk$, then $\operatorname{curl} \vec{F}$ is
(A) $i + j + k$ (B) 0 (C) $i - j - k$ (D) $2i + j - 2k$
75. Let F be a finite field. Then which of the following may be the possible cardinality of F ?
(A) 15 (B) 20 (C) 25 (D) 30
76. Every subgroup of an abelian group is
(A) $abelian$ (D) none of the above.
77. Le $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid a \in \mathbb{R} \setminus \{0\} \right\}$ be a group with binary operation defined by usual matrix multiplication. Then the inverse of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is
(A) $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$ (C) $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ (D) $\begin{bmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{bmatrix}$
78. Let H and K be subgroups of G . Then which of the following is necessarily a subgroup of G ?
(A) HK (B) KH (C) $H \cap K$ (D) $H \cup K$

79. Let S_5 be the permutation group on five symbols $\{1, 2, 3, 4, 5\}$. Then order of permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ is equal to (A) 5 (B) 4 (C) 3 (D) 6

80. Let G be a group and $a, b, c \in G$ are non-identity elements. Which of the following solves the equation axb = c for x?

(A)
$$acb^{-1}$$
 (B) $a^{-1}b^{-1}$ (C) $a^{-1}cb^{-1}$ (D) cb^{-2}

81. Let H be a subgroup of a noncyclic group G. Then which of the following is correct?

- (A) H is always noncyclic (B) H is always cyclic
- (C) H is always nonabelian (D) None of the above
- 82. Let S_6 be the permutation group on six symbols $\{1, 2, 3, 4, 5, 6\}$. Which of the following is not an even permutation?
 - (A) $(1\ 3\ 5\ 6\ 2)$ (B) $(1\ 2\ 3)(4\ 5)(4\ 5)$ (C) $(2\ 6\ 3\ 4\ 5\ 1)$ (D) $(1\ 2)(1\ 4)(2\ 3)(4\ 5)$
- 83. Which of the following is correct?
 - (A) Every integral domain is a field.
 - (B) Every finite integral domain is a field.
 - (C) There is an integral domain with characteristic equal to 10.
 - (D) None of the above.
- 84. Let J be an ideal of commutative ring with unity and let u be an unit element of R such that $u \in J$. Then

(D) $4\mathbb{Z} \cap 8\mathbb{Z}$

(D) -1

- (A) The multiplicative identity $1 \notin J$
- (B) J is a proper ideal of R such that $J \neq R$
- (C) J = R
- (D) There is a minimal ideal M such that $J \subset M \subseteq R$
- 85. Which of the following is a prime ideal of $(\mathbb{Z}, +, \cdot)$?
 - (A) $6\mathbb{Z}$ (B) $2\mathbb{Z} \cap 4\mathbb{Z}$ (C) $7\mathbb{Z}$
- 86. If Z = 2 3i, then |Z| equals
- (A) 13 (B) $\sqrt{13}$
- 87. $\int_0^1 ze^{2z} dz$ equals (A) $e^2 + 1$ (B) $(e^2 + 1)/4$ (C) $(e^2 - 1)/4$ (D) $e^2 - 1$
- 88. $\lim_{z \to i} \frac{Z^{10} + 1}{Z^6 + 1}$ equals (A) 3/5 (B) 2/5 (C) 5/3 (D) 1/3
 - (Download from https://pkalika.in/category/download/question-paper/)

(C) - 13

89. The integral
$$\int_{3}^{1-i} 4z \ dz$$
 equals
(A) $18 - 4i$ (B) $-4i$ (C) i (D) $-i$
90. If $f(z)$ is analytic in a simply connected domain D and $f'(z)$ is continuous in D , then $\oint_{C} f(z) \ dz$ equals
(A) 0 (B) 1 (C) $2\pi i$ (D) $-2\pi i$
91. The value of the integral $\int_{|z-2|-2} \frac{5z + 7}{z^2 + 2z - 3} \ dz$ is equal to
(A) πi (B) $2\pi i$ (C) $3\pi i$ (D) $6\pi i$
92. If $f(z) = u(x,y) + iv(x,y)$ is analytic in a domain D , then
(A) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ (B) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$
(C) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ (D) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$
(C) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ (D) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$
93. An entire function is
(A) infinitely differentiable (B) finitely differentiable
(C) not differentiable (D) identically zero
94. Which of the following is incorrect statement?
(A) If $f(z)$ is analytic at z_0 , then $f'(z)$ is also analytic at z_0 .
(C) Analytic function is entire.
(D) Entire function is analytic.
95. The complex line integral is
(A) path dependent (D) none of these
96. The set of all feasible solutions to a linear programming problem (LPP) is
(A) a concave set (D) an infinite set only
97. A basic feasible solution to a LPP, in which at least one of the basic variables is zero is
(A) degenerate (B) infeasible (C) non-degenerate (D) unbounded
98. The optimal solution of the LPP: Maximize $Z = 4x_1 + x_2$, such that $x_1 + x_2 \leq 50$, $3x_1 + x_2 \geq 90$, $x_1, x_2 \geq 0$, is
(A) $x_1 = 0, x_2 = 0$ (D) $x_1 = 0, x_2 = 30$ '
(C) $x_1 = 0, x_2 = 0$ (D) $x_1 = 0, x_2 = 50$

- (A) Arbitrary intersection of convex sets is a convex set.
- (B) Hyperplane is a convex set.
- (C) Union of two convex sets need not to be a convex set.
- (D) Union of two convex sets is a convex set.

100. In a linear programming problem constraints are

(A) nonlinear

(B) linear

- (C) linear as well as nonlinear
- (D) none of the above

0